3.246 \(\int \frac{1}{(e \cot (c+d x))^{3/2} (a+a \sec (c+d x))} \, dx\)

Optimal. Leaf size=290 \[ \frac{\sqrt{\sin (2 c+2 d x)} \cot (c+d x) \csc (c+d x) \text{EllipticF}\left (c+d x-\frac{\pi }{4},2\right )}{a d (e \cot (c+d x))^{3/2}}+\frac{\tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}-\frac{\tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}+\frac{\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}-\frac{\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}} \]

[Out]

(Cot[c + d*x]*Csc[c + d*x]*EllipticF[c - Pi/4 + d*x, 2]*Sqrt[Sin[2*c + 2*d*x]])/(a*d*(e*Cot[c + d*x])^(3/2)) +
 ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/(Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2)) - ArcTan[1 + S
qrt[2]*Sqrt[Tan[c + d*x]]]/(Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2)) + Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2)) - Log[1 + Sqrt[2]*Sqrt[Tan
[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.289011, antiderivative size = 290, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 14, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.56, Rules used = {3900, 3888, 3884, 3476, 329, 211, 1165, 628, 1162, 617, 204, 2614, 2573, 2641} \[ \frac{\tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}-\frac{\tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}+\frac{\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}-\frac{\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} a d \tan ^{\frac{3}{2}}(c+d x) (e \cot (c+d x))^{3/2}}+\frac{\sqrt{\sin (2 c+2 d x)} \cot (c+d x) \csc (c+d x) F\left (\left .c+d x-\frac{\pi }{4}\right |2\right )}{a d (e \cot (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cot[c + d*x])^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

(Cot[c + d*x]*Csc[c + d*x]*EllipticF[c - Pi/4 + d*x, 2]*Sqrt[Sin[2*c + 2*d*x]])/(a*d*(e*Cot[c + d*x])^(3/2)) +
 ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/(Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2)) - ArcTan[1 + S
qrt[2]*Sqrt[Tan[c + d*x]]]/(Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2)) + Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2)) - Log[1 + Sqrt[2]*Sqrt[Tan
[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2]*a*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2))

Rule 3900

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*((a_) + (b_.)*sec[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol] :> Dist[(e*Co
t[c + d*x])^m*Tan[c + d*x]^m, Int[(a + b*Sec[c + d*x])^n/Tan[c + d*x]^m, x], x] /; FreeQ[{a, b, c, d, e, m, n}
, x] &&  !IntegerQ[m]

Rule 3888

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rule 3884

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(e*
Cot[c + d*x])^m, x], x] + Dist[b, Int[(e*Cot[c + d*x])^m*Csc[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, m}, x]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 2614

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2573

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{(e \cot (c+d x))^{3/2} (a+a \sec (c+d x))} \, dx &=\frac{\int \frac{\tan ^{\frac{3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx}{(e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=\frac{\int \frac{-a+a \sec (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{a^2 (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=-\frac{\int \frac{1}{\sqrt{\tan (c+d x)}} \, dx}{a (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}+\frac{\int \frac{\sec (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{a (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=\frac{\cos ^{\frac{3}{2}}(c+d x) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{\sin (c+d x)}} \, dx}{a (e \cot (c+d x))^{3/2} \sin ^{\frac{3}{2}}(c+d x)}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=\frac{\left (\cot (c+d x) \csc (c+d x) \sqrt{\sin (2 c+2 d x)}\right ) \int \frac{1}{\sqrt{\sin (2 c+2 d x)}} \, dx}{a (e \cot (c+d x))^{3/2}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=\frac{\cot (c+d x) \csc (c+d x) F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{\sin (2 c+2 d x)}}{a d (e \cot (c+d x))^{3/2}}-\frac{\operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}-\frac{\operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=\frac{\cot (c+d x) \csc (c+d x) F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{\sin (2 c+2 d x)}}{a d (e \cot (c+d x))^{3/2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=\frac{\cot (c+d x) \csc (c+d x) F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{\sin (2 c+2 d x)}}{a d (e \cot (c+d x))^{3/2}}+\frac{\log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}-\frac{\log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ &=\frac{\cot (c+d x) \csc (c+d x) F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{\sin (2 c+2 d x)}}{a d (e \cot (c+d x))^{3/2}}+\frac{\tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}-\frac{\tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}+\frac{\log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}-\frac{\log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} a d (e \cot (c+d x))^{3/2} \tan ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [C]  time = 8.21183, size = 112, normalized size = 0.39 \[ \frac{4 \sin ^2\left (\frac{1}{2} (c+d x)\right ) \cot ^2(c+d x) \csc (c+d x) \left (\sqrt{\sec ^2(c+d x)}+1\right ) \left (3 \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-\tan ^2(c+d x)\right )+\cot ^2(c+d x) \text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},-\cot ^2(c+d x)\right )\right )}{3 a d (e \cot (c+d x))^{3/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((e*Cot[c + d*x])^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

(4*Cot[c + d*x]^2*Csc[c + d*x]*(3*Hypergeometric2F1[1/4, 1/2, 5/4, -Tan[c + d*x]^2] + Cot[c + d*x]^2*Hypergeom
etric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2])*(1 + Sqrt[Sec[c + d*x]^2])*Sin[(c + d*x)/2]^2)/(3*a*d*(e*Cot[c + d*x])
^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.259, size = 323, normalized size = 1.1 \begin{align*} -{\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1 \right ) ^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) \cos \left ( dx+c \right ) }{2\,ad \left ( \sin \left ( dx+c \right ) \right ) ^{4}} \left ( i{\it EllipticPi} \left ( \sqrt{{\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}},{\frac{1}{2}}+{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) -i{\it EllipticPi} \left ( \sqrt{{\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}},{\frac{1}{2}}-{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) -{\it EllipticPi} \left ( \sqrt{{\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}},{\frac{1}{2}}+{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) +4\,{\it EllipticF} \left ( \sqrt{{\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}},1/2\,\sqrt{2} \right ) -{\it EllipticPi} \left ( \sqrt{{\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}},{\frac{1}{2}}-{\frac{i}{2}},{\frac{\sqrt{2}}{2}} \right ) \right ) \sqrt{{\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}}\sqrt{{\frac{-1+\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}}\sqrt{{\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }}} \left ({\frac{e\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cot(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x)

[Out]

-1/2/a/d*2^(1/2)*(cos(d*x+c)+1)^2*(I*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(
1/2))-I*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-EllipticPi(((1-cos(d*x+
c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+4*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/
2),1/2*2^(1/2))-EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2)))*((-1+cos(d*x+c
))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2
)*(-1+cos(d*x+c))*cos(d*x+c)/(e*cos(d*x+c)/sin(d*x+c))^(3/2)/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (e \cot \left (d x + c\right )\right )^{\frac{3}{2}}{\left (a \sec \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((e*cot(d*x + c))^(3/2)*(a*sec(d*x + c) + a)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))**(3/2)/(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (e \cot \left (d x + c\right )\right )^{\frac{3}{2}}{\left (a \sec \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((e*cot(d*x + c))^(3/2)*(a*sec(d*x + c) + a)), x)